On the analytic structure of the driven pendulum

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L1223
(http://iopscience.iop.org/0305-4470/23/23/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:45

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the analytic structure of the driven pendulum

S Parthasarathy and M Lakshmanan
Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, Tamilnadu, India

Received 14 September 1990

Abstract

The analytic structure of the solution of the driven pendulum is investigated through Painlevé analysis in the complex time plane. The existence is pointed out of a two-armed infinite sheeted Riemann structure of the singularities after an exponential transformation.

We consider the general form of the equation of motion of the driven pendulum [1], given by

$$
\begin{equation*}
\ddot{x}+\alpha \dot{x}+\omega_{0}^{2} \sin x=\gamma \cos \omega t \quad \cdot=\mathrm{d} / \mathrm{d} t \tag{1}
\end{equation*}
$$

where ω_{0}^{2} is the natural frequency of the pendulum, α is the viscous damping parameter, γ and ω are, respectively, the amplitude and frequency of the external periodic force. Here we wish to investigate the non-integrability aspects of the system (1) by studying the nature of the singularities exhibited by the solution in the complex time plane.

It is well known that the Painlevé ($P-$) analysis [2-5] can be profitably used not only to investigate the integrability aspects [3-5] of dynamical systems, but also to analyse the non-integrability aspects, especially through the analytic structure studies [6-12] of the solution of the equation of motion. Most of the dynamical systems which have been studied recently for their analytic structure in the non-integrable case are of polynomial type such as the coupled anharmonic oscillators [4, 5], the Henon-Heiles system [6], the Lorenz system [8], the Duffing oscillator [7-12] and so on. However, very few dynamical systems have been studied in this way which have their equations of motion with non-polynomial type such as the Toda lattice [6], the sine-Gordon equation and so on. In this letter we present the analytic structure of the driven pendulum (1) and show that the singularities exhibit a complicated, clustered, twoarmed multisheeted Riemann structure in the complex t-plane, after making an exponential transformation.

Introducing the variables:

$$
\begin{equation*}
y=\mathrm{e}^{\mathrm{i} x} \quad \text { and } \quad i=-\mathrm{i} t \tag{2}
\end{equation*}
$$

(1) reduces (after dropping the tilde) to

$$
\begin{align*}
& y \ddot{y}-\dot{y}^{2}+\mathrm{i} \alpha y \dot{y}+\frac{1}{2} \omega_{0}^{2} y-\frac{1}{2} \omega_{0}^{2} y^{3}+\mathrm{i} \gamma y^{2} \cosh \omega t=0 \\
& \cdot=\mathrm{d} / \mathrm{d} t . \tag{3}
\end{align*}
$$

We will analyse the singularity structure of the solution to this equation. The general solution to (3) can be represented locally as a Laurent series of the form

$$
\begin{equation*}
y=\sum_{j=0}^{\infty} a_{j} \tau^{j-2} \quad \tau=\left(t-t_{0}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

about an arbitrary movable singularity t_{0}, in which one of the $a_{j} \mathrm{~s}$ must be arbitrary in addition to t_{0}. Direct substitution of the ansatz (4) into (3) yields the recursion relations for the a_{j} s:

$$
\begin{align*}
& \sum_{r}\left(a_{j-r} a_{r}(j-r-2)(j-2 r-1)+\mathrm{i} \alpha a_{j-r-1} a_{r}(j-r-3)-\frac{1}{2} \omega_{0}^{2} \sum_{p} a_{j-r} a_{r-p} a_{p}\right. \\
&\left.+\mathrm{i} \gamma \sum_{p} G_{j-r-2} a_{r-p} a_{p}\right) \\
&=-\frac{1}{2} \omega_{0}^{2} a_{j-4^{\prime}} \quad 0 \leqslant p \leqslant r \leqslant j \tag{5}
\end{align*}
$$

where

$$
G(t)=\cosh \omega t \text { and } G_{n}=\left.\frac{1}{n!} \frac{\partial^{n} G(t)}{\partial t^{n}}\right|_{t=t_{0}} .
$$

From (5) one obtains

$$
\begin{array}{ll}
j=0 & a_{0}=4 / \omega_{0}^{2} \\
j=1 & a_{1}=-\mathrm{i} 4 \alpha / \omega_{0}^{2} \\
j=2 & 0 \cdot a_{2}+\left(2 \alpha^{2}+\mathrm{i} \gamma \cosh \omega t_{0}\right) a_{0}^{2}=0 . \tag{6c}
\end{array}
$$

Equation ($6 c$) gives the compatability condition that ensures the arbitrariness of a_{2}. This will be satisfied if, and only if, both α and γ become zero for arbitrary t_{0}. Thus (3) is of P-type only when both $\alpha=0$ and $\gamma=0$, in which case the system obviously become integrable in terms of Jacobian elliptic functions.

If $\alpha \neq 0$ and $\gamma \neq 0$, the arbitrariness of a_{2} can be recaptured by modifying the ansatz (4) and introducing logarithmic terms in (4) through the psi series [7]

$$
\begin{equation*}
y=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j k} \tau^{j-2}\left(\tau^{2} \ln \tau\right)^{k} . \tag{7}
\end{equation*}
$$

Then the recursion relation for the $a_{j k} s$ for (3) becomes

$$
\begin{align*}
\sum_{r, s}\left(a_{j-r, k-s} a_{r s}\right. & (j-r+2 k-2 s-2)(j-2 r+2 k-4 s-1) \\
& +a_{j-r-2, k-s+1} a_{r s}[(2 j-2 r+4 k-4 s-5)(k-2 s+1)-s] \\
& +a_{j-r-4, k-s+2} a_{r s}(k-s+2)(k-2 s+1) \\
& +\mathrm{i} \alpha a_{j-r-1, k-s} a_{r s}(j-r+2 k-2 s-3)+\mathrm{i} \alpha a_{j-r-3, k-s+1} a_{r s}(k-s+1) \\
& \left.-\frac{1}{2} \omega_{0}^{2} \sum_{p, q} a_{j-r, k-s} a_{r-p, s-q} a_{p q}+\mathrm{i} \gamma \sum_{p} G_{j-r-2} a_{r-p, k-s} a_{p s}\right) \\
& =-\frac{1}{2} \omega_{0}^{2} a_{j-4, k} \quad 0 \leqslant p \leqslant r \leqslant j \quad 0 \leqslant q \leqslant s \leqslant k . \tag{8}
\end{align*}
$$

The values of the coefficients a_{00} and a_{10} are given by $a_{00}=4 / \omega_{0}^{2}$ and $a_{10}=-\mathrm{i} 4 \alpha / \omega_{0}^{2}$. For a_{20} to be arbitrary we now have

$$
\begin{equation*}
0 \cdot a_{20}-a_{01} a_{00}+\left(2 \alpha^{2}+\mathrm{i} \gamma \cosh \omega t_{0}\right) a_{00}^{2}=0 \tag{9}
\end{equation*}
$$

which means that

$$
\begin{equation*}
a_{01}=4\left(2 \alpha^{2}+\mathrm{i} \gamma \cosh \omega t_{0}\right) / \omega_{0}^{2} . \tag{10}
\end{equation*}
$$

From (7) we see that the singularity t_{0} is no longer a movable pole but is, instead, a movable logarithmic branch point and (3) is not of P-type. Thus the system (1) is, in general, non-integrable except when both $\alpha=0$ and $\gamma=0$.

In order to study the analytic structure of the solution of (3) we now look for a closed set of recursion relations amongst the $a_{j k} s$. These turn out to be the set $a_{0 k}$ $k=0,1,2, \ldots$, which satisfy

$$
\begin{align*}
& \sum_{s}([8(k-s)(k-s-1)-8 s(k-s)+8 s-4(k-s)+4] \\
& \left.\times a_{0, k-s} a_{0 s}-\omega_{0}^{2} \sum_{q} a_{0, k-s} a_{0, s-q} a_{0 q}\right)=0 . \tag{11}
\end{align*}
$$

Introducing the generating function

$$
\begin{equation*}
\Theta(z)=\sum_{k=0}^{\infty} a_{0 k} z^{k} \tag{12}
\end{equation*}
$$

where z is a function of τ, the following differential equation for $\Theta(z)$ is obtained:

$$
\begin{equation*}
8 z^{2} \Theta \Theta^{\prime \prime}-8 z^{2} \Theta^{\prime 2}+4 z \Theta \Theta^{\prime}+4 \Theta^{2}-\omega_{0}^{2} \Theta^{3}=0 \tag{13}
\end{equation*}
$$

where prime denotes differentiation with respect to z. Since in the limit $\tau \rightarrow 0$, the most dominant terms in the psi series (7) involve powers of $\tau^{2} \ln \tau$ only, we can obtain (13) in a more direct way by substituting

$$
\begin{equation*}
y=\frac{1}{\tau^{2}} \Theta(z) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
z=\tau^{2} \ln \tau \tag{15}
\end{equation*}
$$

into (3). Thus (13) can be regarded as the original (3) rescaled in the neighbourhood of a given singularity t_{0}. Furthermore, it is a straightforward exercise to show that (13) has the Painlevé property with $\Theta(z)$ having local expansion

$$
\begin{equation*}
\Theta(z)=\sum_{j=0}^{\infty} A_{j}\left(z-z_{0}\right)^{j-2} \tag{16}
\end{equation*}
$$

in which A_{2} and z_{0} are the arbitrary parameters.
We can also see that (13) can be integrated exactly by making the substitution

$$
\begin{equation*}
\Theta(z)=\xi^{2} f(\xi) \quad \xi=\sqrt{z} \tag{17}
\end{equation*}
$$

in (13) so that we get

$$
\begin{equation*}
f f^{\prime \prime}-f^{\prime 2}-\frac{1}{2} \omega_{0}^{2} f^{3}=0 \tag{18}
\end{equation*}
$$

where prime refers to differentiation with respect to ξ. The first integral of (18) is given by [13]

$$
\begin{equation*}
f^{\prime 2}=\omega_{0}^{2} f^{3}+I_{1} f^{2} \tag{19}
\end{equation*}
$$

where the value of the integration constant can be defined as $I_{1}=-3 \omega_{0}^{2} a_{01}=$ $-12\left(2 \alpha^{2}+\mathrm{i} \gamma \cosh \omega t_{0}\right)$. By a simple transformation

$$
\begin{equation*}
f(\xi)=\left[g^{2}(\xi)-1\right] I_{1} / \omega_{0}^{2} \tag{20}
\end{equation*}
$$

(19) is reduced to a simple first-order nonlinear ordinary differential equation:

$$
\begin{equation*}
g^{\prime}(\xi)=\frac{1}{2} \sqrt{I_{1}}\left[1-g^{2}(\xi)\right] . \tag{21}
\end{equation*}
$$

Equation (21) can be readily integrated and its solution is given by

$$
\begin{equation*}
g(\xi)=\tanh \left[\frac{1}{2} \sqrt{I_{1}}\left(\xi-\xi_{0}\right)\right] \tag{22}
\end{equation*}
$$

where ξ_{0} is the arbitrary integration constant. Choosing $\xi_{0}=0$ for convenience, we can write

$$
\begin{equation*}
f(\xi)=-\left(I_{1} / \omega_{0}^{2}\right) \operatorname{sech}^{2}\left(\frac{1}{2} \sqrt{I_{1}} \xi\right) . \tag{23}
\end{equation*}
$$

It is evident that $f(\xi)$ has poles of second order which are situated at the discrete points

$$
\begin{equation*}
\xi_{m}=\mathrm{i} \frac{\pi}{\sqrt{I}_{1}}(2 m+1) \quad m \in \mathbb{Z} \tag{24}
\end{equation*}
$$

in the complex ξ plane, where m denotes the lattice site integer.
The singularity positions in the z plane can be obtained from (cf (17)) the pole positions of ξ_{m} as

$$
\begin{equation*}
z_{m}=\frac{1}{12} \pi^{2}(2 m+1)^{2} \frac{\left(2 \alpha^{2}-\mathrm{i} \gamma \cosh \omega t_{0}\right)}{\left(4 \alpha^{4}+\gamma^{2} \cosh ^{2} \omega t_{0}\right)} . \tag{25}
\end{equation*}
$$

From (25) we can study the singularity structure in the complex z plane by plotting z_{lm} versus z_{Re} for a chosen set of parametric values. As an illustration, in figure 1 we have fixed the parameter values as $\alpha=0.3, \omega_{0}^{2}=1.0, \omega=0.5$ and obtained the singularity structure in the complex z-plane about the singularity located at the origin (since we take $t_{0}=0$) for $\gamma=0.5$. This singularity pattern, given by (25), can be mapped back to the complex t-plane by the multivalued transformation (cf (15) where we have chosen $t_{0}=0$)

$$
\begin{equation*}
z=t^{2} \ln t \tag{26}
\end{equation*}
$$

Figure 1. Singularity structure in the complex z-plane $\left(z=t^{2} \ln t\right)$, given by (25), for $\alpha=0.3$, $\omega_{0}^{2}=1.0, \omega=0.5, m=-10,-9, \ldots,-1,0,1, \ldots, 9,10$ and $\gamma=0.5$.
similar to the procedure adopted by Fournier, Levine and Tabor [7] for the Duffing oscillator. This can be performed by using polar coordinates in both z - and t-planes as

$$
\begin{equation*}
z=\rho \mathrm{e}^{\mathrm{i} \phi} \quad \text { and } \quad t=r \mathrm{e}^{\mathrm{i} \theta} . \tag{27}
\end{equation*}
$$

From (26) and (27) we can write the real and imaginary parts of z in terms of r and θ as

$$
\begin{align*}
& \operatorname{Re} z=r^{2}[\cos (2 \theta) \ln r-(\theta+2 \pi n) \sin (2 \theta)] \tag{28a}\\
& \operatorname{Im} z=r^{2}[\sin (2 \theta) \ln r+(\theta+2 \pi n) \cos (2 \theta)] \tag{28b}
\end{align*}
$$

where n is the Riemann sheet index in the t-plane. From (28), it follows that

$$
\begin{equation*}
r=\exp [-(\theta+2 \pi n) \cot (2 \theta-\phi) \tag{29}
\end{equation*}
$$

and so
$\rho=-(\theta+2 \pi n) \operatorname{cosec}(2 \theta-\phi) \exp [-2(\theta+2 \pi n) \cot (2 \theta-\phi)]$.
Equations (29) and (30) completely determine the mapping $z \rightarrow t$.
For a given pole in the z-plane given by (25), we assign polar coordinates ρ and ϕ which can be readily computed. Then from (30) we can compute the value of θ, by a simple numerical root search method, for any sheet n, corresponding to the given (ρ, ϕ) values. From this value of θ the associated r value is computed from (29). Thus for any one of the singularities in the z-plane given by (25), we can obtain the corresponding singularity and its substructure through the analytic mapping (29) and (30). In figure 2 we have shown one such local singularity structure in the complex t-plane, in the neighbourhood of the marked singularity in figure 1 , determined from the analytic mapping for the same choice of parameteric values as mentioned above. From figure 2 we find that the local singularity structure obtained is a two armed structure with the singularities becoming densely 'packed' and clustered along each arm. As they approach the centre of the two arms, with n increasing. The recursive nature of this clustering leads to an immensely complicated singularity structure in

Figure 2. Local singularity structure in the complex t-plane in the neighbourhood of the marked singularity in figure 1, determined from the analytic mapping (29) and (30) for $\alpha=0.3, \omega_{0}^{2}=1.0, \omega=0.5, m=0$ and $\gamma=0.5$.
the complex t-plane. This can be further checked by directly integrating the equation of motion (1) in the complex t-plane using the atomft integrator, developed by Chang [14], thereby obtaining the singularity structure in the complex t-plane. Work along these lines is in progress and will be reported elsewhere.

The work of SP forms part of a research project sponsored by the Council of Scientific and Industrial Research, India.

References

[1] Moon F C 1987 Chaotic Vibrations (New York: Wiley)
[2] Ablowitz M J, Ramani A and Segur H 1980 J. Math. Phys. 21715
[3] Ramani A, Grammaticos B and Bountis T 1989 Phys. Rep. 180159
[4] Lakshmanan M and Sahadevan R 1985 Phys. Rev. A 31861
[5] Lakshmanan M and Sahadevan R 1990 Phys. Rep. in press
[6] Chang Y F, Greene J M, Tabor M and Weiss J 1983 Physica 8D 183
[7] Fournier J D, Levine G and Tabor M 1988 J. Phys. A: Math. Gen. 2133
[8] Levine G and Tabor M 1988 Physica 33D 189
[9] Tabor M 1989 Pramana J. Phys. 33315
[10] Bountis T, Papageorgiou V and Bier M 1987 Physica 24D 292
[11] Bountis T, Beir M and Papageorgiou V 1990 Symmetries and Singularity Structures ed M Lakshmanan and M Daniel (Heidelberg: Springer) in press
[12] Parthasarathy S 1990 Symmetries and Singularity Structures ed M Lakshmanan and M Daniel (Berlin: Springer) in press
[13] Ince E L 1956 Ordinary Differential Equations (New York: Dover)
[14] Chang Y F 1989 atomft User Manual, Version 2.50 , private communication

