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LE'ITER TO THE EDITOR 

On the analytic structure of the driven pendulum 

S Parthasarathy and M Lakshmanan 
Department of Physics, Bharathidasan University, Tiruchirapalli 620 024, Tamilnadu, India 

Received 14 September 1990 

Abstract. The analytic structure of the solution of the driven pendulum is investigated 
through PainlevC analysis in the complex time plane. The existence is pointed out of a 
two-armed infinite sheeted Riemann structure of the singularities after an exponential 
transformation. 

We consider the general form of the equation of motion of the driven pendulum [l], 
given by 

X + a x + w ~  sin x =  y cos wt = d/dt  (1) 
where w i  is the natural frequency of the pendulum, CY is the viscous damping parameter, 
y and w are, respectively, the amplitude and frequency of the external periodic force. 
Here we wish to investigate the non-integrability aspects of the system (1) by studying 
the nature of the singularities exhibited by the solution in the complex time plane. 

It is well known that the PainlevC (P-) analysis [2-51 can be profitably used not 
only to investigate the integrability aspects [3-51 of dynamical systems, but also to 
analyse the non-integrability aspects, especially through the analytic structure studies 
[6-121 of the solution of the equation of motion. Most of the dynamical systems which 
have been studied recently for their analytic structure in the non-integrable case are 
of polynomial type such as the coupled anharmonic oscillators [4,5], the Henon-Heiles 
system [6], the Lorenz system [8], the Duffing oscillator [7-121 and so on. However, 
very few dynamical systems have been studied in this way which have their equations 
of motion with non-polynomial type such as the Toda lattice [6], the sine-Gordon 
equation and so on. In this letter we present the analytic structure of the driven 
pendulum (1) and show that the singularities exhibit a complicated, clustered, two- 
armed multisheeted Riemann structure in the complex t-plane, after making an 
exponential transformation. 

Introducing the variables: 

and i= -i t  (2) y = eix 

(1) reduces (after dropping the tilde) to 

yj; - y + i cuyj + {w:y - &iy3 + i yy2  cosh ut = 0 

* = d/dt. (3) 
We will analyse the singularity structure of the solution to this equation. The general 
solution to (3) can be represented locally as a Laurent series of the form 
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about an arbitrary movable singularity to ,  in which one of the ajs must be arbitrary 
in addition to to. Direct substitution of the ansatz (4) into (3)  yields the recursion 
relations for the ais: 

where 

From 

G(t)-coshwt and G , , = l -  
n. at" 

5 )  one obtains 

j = Q  a, = 410; 

j = l  a ,  = -i4a/wi 

j = 2  O ~ a 2 + ( 2 a 2 + i y c o s h w t o ) a ~ = 0 .  

Equation ( 6 c )  gives the compatability condition that ensures the arbitrariness of a2 .  
This will be satisfied if, and only if, both a and y become zero for arbitrary to.  Thus 
(3) is of P-type only when both a = 0 and y = 0, in which case the system obviously 
become integrable in terms of Jacobian elliptic functions. 

If a Z 0 and y # 0, the arbitrariness of a, can be recaptured by modifying the ansatz 
(4) and introducing logarithmic terms in (4) through the psi series [7] 

Then the recursion relation for the a]ks for ( 3 )  becomes 

a,-r,k-sa,s(j - r+2k -2s -2) ( j  -2r +2k -4s - 1) :( 
U J - r - 2 , k - s + l U r s [ ( 2 j - 2 r + 4 k  -4s - 5 ) ( k  - 2 S +  1) - S ]  

UJ-r-4,k-s+2Urs(k-S + 2 ) ( k - 2 ~  + 1) 

+ iaaJ-r-l,k-sars( j - r+2k -2s - 3) + i a ~ , - ~ - ~ , ~ - ~ + ~ a ~ ~ ( k  - s + 1) 

P 

(8) 
The values of the coefficients a, and a,, are given by a o o = 4 / w ;  and a,,= -i4a/w;. 
For a20 to be arbitrary we now have 

(9) 

) 1 2  
- 2 0 0  1 aJ-r.k-sar-p,s-qapy +i?  c G~-r-2ar-p.k-saps 

P.4 

- - -IwOa,-4,k 1 2  O s p ~ r s j  O s q s s s k .  

0 . a20 - aOlaOo + (2a2 + iy cosh wto)a io  = 0 

uo, =4(2a2+ iy  cosh w t o ) / w ; .  (10) 

which means that 
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From (7) we see that the singularity to is no longer a movable pole but is, instead, 
a movable logarithmic branch point and (3) is not of P-type. Thus the system (1) is, 
in general, non-integrable except when both a = 0 and y = 0. 

In order to study the analytic structure of the solution of (3) we now look for a 
closed set of recursion relations amongst the a j k s .  These turn out to be the set aOk 

k = 0, 1,2,  . . . , which satisfy 

([8(k - s ) ( k  - s - 1)  - 8 s (  k - s) + 8s -4(k - s) $41 

Introducing the generating function 
m 

@ ( z ) =  1 aOkZk 
k = O  

where z is a function of T, the following differential equation for @ ( z )  is obtained: 

8,7’(3(3” - 8~’(3’~  + 4z(3@’ + 4 0 2  - ,3i@3 = 0 (13) 

where prime denotes differentiation with respect to z. Since in the limit T + 0, the most 
dominant terms in the psi series (7) involve powers of T~ In T only, we can obtain (13) 
in a more direct way by substituting 

1 
y =y @ ( z )  

7 

where 

(15) 2 
Z = T  In7  

into (3). Thus (13) can be regarded as the original (3) rescaled in the neighbourhood 
of a given singularity to.  Furthermore, it is a straightforward exercise to show that (13) 
has the PainlevC property with @( z )  having local expansion 

m 

O ( Z ) =  A ~ ( Z - Z , ) ’ - ~  
j = O  

in which A2 and zo are the arbitrary parameters. 
We can also see that (13) can be integrated exactly by making the substitution 

@ ( z )  = S’f (5) I $ = &  (17) 

(18) ff I’ - f - f ; f 3 = 0 

in (13) so that we get 

where prime refers to differentiation with respect to 5. The first integral of (18) is given 
by ~ 3 1  

f ’2 = w: f 3 + I ]  f ’ (19) 
where the value of the integration constant can be defined as I , = - 3 0 ; a o , =  
-12(2a2+iy cosh uto). By a simple transformation 

(20) f ( 5 )  = [ g 2 ( 5 )  - lIIl/,3: 
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(19) is reduced to a simple first-order nonlinear ordinary differential equation: 

gY5) =+a [ I -  S’(5)l. (21) 

d 5 ) = t a n h k m 5 - 5 0 ) 1  (22) 

Equation (21) can be readily integrated and its solution is given by 

where to is the arbitrary integration constant. Choosing to = 0 for convenience, we can 
write 

f (5)  = - ( I , / & )  sech2( fa [ ) .  (23) 

It is evident that f( 5) has poles of second order which are situated at the discrete points 

in the complex 5 plane, where m denotes the lattice site integer. 

positions of e,,, as 
The singularity positions in the z plane can be obtained from (cf (17)) the pole 

(2a2- iy  cosh uto) 

(4a4+ y 2  cosh2 wto) ’  
z ,  =&r2(2m + 

From (25) we can study the singularity structure in the complex z plane by plotting 
zIm versus zRe for a chosen set of parametric values. As an illustration, in figure 1 we 
have fixed the parameter values as a = 0.3, cog = 1.0, o = 0.5 and obtained the singularity 
structure in the complex z-plane about the singularity located at the origin (since we 
take to = 0) for y = 0.5. This singularity pattern, given by ( 2 5 ) ,  can be mapped back to 
the complex t-plane by the multivalued transformation (cf (15) where we have chosen 
t o  = 0) 

z = t 2  In t 

4 
-4  
-4 0 

Z R ~  x 103- 

Figure 1. Singularity structure in the complex z-plane ( z  = r 2  In r ) ,  given by ( 2 5 ) ,  for CY = 0.3, 
= 1.0, w = 0.5, m = -10, -9, . . . , -1 ,O,  1, . . . , 9 ,  10 and y = 0.5. 



Letter to the Editor L1227 

similar to the procedure adopted by Fournier, Levine and Tabor [7] for the Duffing 
oscillator. This can be performed by using polar coordinates in both z- and t-planes as 

(27) if? z = p ei+ and t = r e .  

From (26) and (27) we can write the real and imaginary parts of z in terms of r and 
8 as 

Re z = r2[cos(26) In r - ( 6 + 2 m )  sin(26)l 

Im z = r2[sin(26) ln r + ( e  + 2 a n )   COS(^^)] 

r = exp[ -( 8 + 2 m )  cot(26 - 4)  

p = - ( t 1 + 2 ~ n )  cosec(28-#) exp[-2(8+2m) cot(26-+)]. 

( 2 8 ~ )  

(28b) 

(29) 

(30) 

where n is the Riemann sheet index in the t-plane. From (28), it follows that 

and so 

Equations (29) and (30) completely determine the mapping z +  t. 
For a given pole in the z-plane given by (25), we assign polar coordinates p and 

q5 which can be readily computed. Then from (30) we can compute the value of 8, by 
a simple numerical root search method, for any sheet n, corresponding to the given 
(p,  4)  values. From this value of 6 the associated r value is computed from (29). Thus 
for any one of the singularities in the z-plane given by (25), we can obtain the 
corresponding singularity and its substructure through the analytic mapping (29) and 
(30). In figure 2 we have shown one such local singularity structure in the complex 
t-plane, in the neighbourhood of the marked singularity in figure 1, determined from 
the analytic mapping for the same choice of parameteric values as mentioned above. 
From figure 2 we find that the local singularity structure obtained is a two armed 
structure with the singularities becoming densely ‘packed’ and clustered along each 
arm. As they approach the centre of the two arms, with n increasing. The recursive 
nature of this clustering leads to an immensely complicated singularity structure in 

- I  0 I 

‘Re - 
Figure 2. Local singularity structure in the complex r-plane in the neighbourhood of the 
marked singularity in figure 1 ,  determined from the analytic mapping (29) and (30) for 
n = 0 . 3 , w ; = l . O ,  w=O.S,  m=Oand y=O.5 .  
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the complex t-plane. This can be further checked by directly integrating the equation 
of motion (1) in the complex f-plane using the ATOMFT integrator, developed by Chang 
[ 141, thereby obtaining the singularity structure in the complex t-plane. Work along 
these lines is in progress and will be reported elsewhere. 

The work of SP forms part of a research project sponsored by the Council of 
Scientific and Industrial Research, India. 
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